Behavior and modeling of FRP grid‐reinforced ultra‐high‐performance concrete under uniaxial tension

Author:

Zeng Jun‐Jie12,Zeng Wei‐Bin1,Zhuge Yan3,Zhou Jie‐Kai1,Quach Wai‐Meng2ORCID,Feng Ran4ORCID

Affiliation:

1. Department of Civil and Transportation Engineering Guangdong University of Technology Guangzhou China

2. Department of Civil and Environmental Engineering University of Macau Macau China

3. UniSA STEM, University of South Australia Adelaide South Australia Australia

4. School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen China

Abstract

AbstractFiber reinforced polymer (FRP) reinforced ultra‐high‐performance concrete (UHPC) structural elements have become increasing popular in research and industry communities. In this paper, uniaxial tension tests were conducted to study the effects of fiber type, fiber length, and fiber content on tensile behavior of FRP grid reinforced UHPC plates (FGRUPs). Additionally, the microstructure analysis of specimens was conducted using scanning electron microscopy. Test results reveal that carbon FRP (CFRP) grid can substantially enhance the tensile performance of UHPC under tension: (1) the FGRUPs exhibit a post‐crack strain‐hardening behavior while the UHPC plates exhibit a post‐crack strain‐softening behavior; (2) the FRP grid enhances the cracking stress of UHPC specimens (except for plates with 1% basalt fibers) and the stiffness of the second segment of the stress–strain curve, and substantially enhances the ultimate tensile stress UHPC specimens. Also, the cost‐effectiveness analysis indicates that plates containing 1% of 12 mm length PE fibers have a highest cost efficiency index. Finally, a modified tensile stress–strain model for FGRUPs is proposed and verified.

Funder

Postdoctoral Research Foundation of China

Universidade de Macau

Australian Research Council

Science Fund for Distinguished Young Scholars of Guangdong Province

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3