Stress–strain characteristics of fire‐exposed recycled coarse aggregate concrete

Author:

Tariq Faraz123ORCID,Hasan Hamza4,Bhargava Pradeep5

Affiliation:

1. Department of Civil Engineering GLA University Mathura India

2. Department of Civil Engineering Uttaranchal University Dehradun India

3. Department of Civil Engineering Jahangirabad Institute of Technology Barabanki India

4. Department of Civil and Environmental Engineering Imperial College London London UK

5. Department of Civil Engineering IIT Roorkee Roorkee India

Abstract

AbstractConcrete sustainability and performance under extreme conditions are of growing interest in construction engineering. This study delves into the influence of recycled coarse aggregate (RCA) content and elevated temperatures on normal‐strength concrete containing RCA. Five different concrete compositions, featuring varying content of RCA (ranging from 0% to 100%), were examined. The heating and subsequent cooling followed the ISO‐834 temperature–time graph up to 800°C. The primary objective was to evaluate residual properties, including the stress–strain behavior, compressive and tensile strength, secant elastic modulus, peak strain, and bond strength of RCA concrete. The findings reveal a consistent decrease in both strength and stiffness parameters of RCA concrete with rising temperatures, while peak strain exhibits a rapid increase at elevated temperatures. Interestingly, RCA content had a negligible impact on the relative deterioration of high‐temperature exposed RCA concrete compared to that at ambient conditions. Moreover, the bond behavior closely resembled that of natural aggregate concrete when used in moderate proportions. Degradation models based on regression analysis of the data were used to quantify the bond strength reduction for RCA‐based concrete and the slip of rebar concerning various temperatures. Importantly, these models demonstrated consistency with those applicable to conventional concrete.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3