Advanced User Interfaces for Teleoperated Surgical Robotic Systems

Author:

Nguyen Chi Cong1,Wong Shing23,Thai Mai Thanh1,Hoang Trung Thien1,Phan Phuoc Thien1,Davies James1,Wu Liao4,Tsai David1,Phan Hoang‐Phuong45ORCID,Lovell Nigel H.15,Do Thanh Nho15

Affiliation:

1. Graduate School of Biomedical Engineering Faculty of Engineering UNSW Sydney Sydney NSW 2052 Australia

2. Faculty of Medicine UNSW Sydney Sydney NSW 2052 Australia

3. Prince of Wales Hospital Randwick Sydney NSW 2031 Australia

4. School of Mechanical and Manufacturing Engineering Faculty of Engineering UNSW Sydney Sydney NSW 2052 Australia

5. Tyree Institute of Health Engineering UNSW Sydney Sydney NSW 2052 Australia

Abstract

AbstractIn recent years, advances in modern technology have altered the practice of surgery from open to minimally invasive surgery (MIS) aided by robots. Teleoperated surgical robotic systems (TSRSs) provide numerous significant benefits for MIS over traditional approaches, including improved safety, more efficient and precise surgery, better cosmesis, shorter recovery time, and reduced postoperative pain. Existing TSRSs’ master consoles, with improvements in vision systems, designs, and control methods, have significantly enhanced human–robot interactions, resulting in safer and more accurate medical intervention operations. Despite advances, haptic technologies, including sensors, machine assistance, and intuitive devices for user interfaces, are still limited, resulting in less effective usage of TSRSs for surgical operations. This review presents a summary of the emerging TSRSs with a focus on their user interfaces. In addition, advanced sensing, haptic, smart garments, and medical image artificial intelligence (AI) assistance technologies are shown with their potential for use in master consoles of the TSRSs are shown. Finally, a discussion on the need for a smart human‐robot interface for TSRSs is given.

Publisher

Wiley

Reference325 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3