Micro‐Scaling Metal‐Organic Framework Films through Direct Laser Writing for Chemical Sensing

Author:

Olorunyomi Joseph F.12ORCID,Singh Ruhani2ORCID,Nasa Zeyad3,Caruso Rachel A.1ORCID,Doherty Cara M.2ORCID

Affiliation:

1. Applied Chemistry and Environmental Science School of Science RMIT University Melbourne Victoria 3000 Australia

2. CSIRO Manufacturing Clayton Melbourne Victoria 3168 Australia

3. Micro Nano Research Facility RMIT University Melbourne Victoria 3000 Australia

Abstract

AbstractA zeolitic imidazolate framework (ZIF‐8) containing two enzymes that form a cascade biocatalyst has been integrated with 3D structures that are fabricated through a two‐photon polymerization using direct laser writing lithography. Glucose oxidase (GOx) and horseradish peroxidase (HRP) are encapsulated by the biomimetic self‐assembly process of ZIF‐8 to form the GOx/HRP/ZIF‐8 composite which grows in situ on the surface of microprinted carbon‐coated hexagonal substrates (cHS). The GOx/HRP/ZIF‐8/cHS film is applied to glucose detection through enzymatic oxidation of glucose to gluconic acid, forming H2O2, in the presence of GOx and the subsequent reduction of H2O2 to water in the presence of HRP and Amplex Red. This reaction is monitored using fluorimetry as the oxidation of Amplex Red with H2O2 catalyzed by HRP forms red‐emitting resorufin. The GOx/HRP/ZIF‐8/cHS film responds to glucose concentrations with a linear range of 10–200 µm, which correlates to the salivary glucose level in healthy humans. The GOx/HRP/ZIF‐8/cHS film shows more than eight times and 13 times enhanced activity than GOx/HRP/cHS (without ZIF‐8) and GOx/HRP/ZIF‐8 on a non‐3D patterned substrate, respectively. The GOx/HRP/ZIF‐8/cHS film retains more than 80% or 100% of its initial activity after being stored for over 2 months at ≤24 or 4 °C, respectively.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3