Genome‐wide meta‐analysis and fine‐mapping prioritize potential causal variants and genes related to leprosy

Author:

Wang Zhenzhen12ORCID,Liu Tingting2,Li Wenchao2,Yu Gongqi2,Mi Zihao2,Wang Chuan2,Liao Xiaojie2,Huai Pengcheng2,Chu Tongsheng2,Liu Dianchang2,Sun Lele2,Fu Xi'an2,Sun Yonghu2,Wang Honglei2,Wang Na2,Liu Jianjun3,Liu Hong2,Zhang Furen2

Affiliation:

1. Department of Biostatistics School of Public Health Cheeloo College of Medicine Shandong University Jinan Shandong China

2. Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong China

3. Department of Human Genetics, Genome Institute of Singapore Singapore Singapore

Abstract

AbstractTo date, genome‐wide association studies (GWASs) have discovered 35 susceptible loci of leprosy; however, the cumulative effects of these loci can only partially explain the overall risk of leprosy, and the causal variants and genes within these loci remain unknown. Here, we conducted out new GWASs in two independent cohorts of 5007 cases and 4579 controls and then a meta‐analysis in these newly generated and multiple previously published (2277 cases and 3159 controls) datasets were performed. Three novel and 15 previously reported risk loci were identified from these datasets, increasing the known leprosy risk loci of explained genetic heritability from 23.0 to 38.5%. A comprehensive fine‐mapping analysis was conducted, and 19 causal variants and 14 causal genes were identified. Specifically, manual checking of epigenomic information from the Epimap database revealed that the causal variants were mainly located within the immune‐relevant or immune‐specific regulatory elements. Furthermore, by using gene‐set, tissue, and cell‐type enrichment analyses, we highlighted the key roles of immune‐related tissues and cells and implicated the PD‐1 signaling pathways in the pathogenetic mechanism of leprosy. Collectively, our study identified candidate causal variants and elucidated the potential regulatory and coding mechanisms for genes associated with leprosy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Biochemistry (medical),Genetics (clinical),Computer Science Applications,Drug Discovery,Genetics,Oncology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3