Photoacoustic imaging of squirrel monkey cortical responses induced by peripheral mechanical stimulation

Author:

Chang Kai‐Wei1,Karthikesh Madhumithra Subramanian2ORCID,Zhu Yunhao1,Hudson Heather M.34,Barbay Scott34,Bundy David34,Guggenmos David J.34,Frost Shawn34,Nudo Randolph J.34,Wang Xueding1,Yang Xinmai25

Affiliation:

1. Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA

2. Bioengineering Graduate Program and Institute for Bioengineering Research, University of Kansas Lawrence Kansas USA

3. Landon Center on Aging, University of Kansas Medical Center Kansas City Kansas USA

4. Department of Rehabilitation Medicine University of Kansas Medical Center Kansas City Kansas USA

5. Department of Mechanical Engineering University of Kansas Lawrence Kansas USA

Abstract

AbstractNon‐human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label‐free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation. A 5 × 5 mm area within the somatosensory cortex region of an adult squirrel monkey was imaged. A deep, fully connected neural network was characterized and applied to the PAM images of the cortex to enhance the vessel structures after mechanical stimulation on the forelimb digits. The quality of the PAM images was improved significantly with a neural network while preserving the hemodynamic responses. The functional responses to the mechanical stimulation were characterized based on the improved PAM images. This study demonstrates capability of PAM combined with machine learning for functional imaging of the NHP brain.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3