The mitochondrial‐related effect of the 905 nm photobiomodulation therapy on 50B11 sensory neurons

Author:

Zupin Luisa1ORCID,Crovella Sergio2,Milena Cadenaro13,Barbi Egidio13,Celsi Fulvio1

Affiliation:

1. Institute for Maternal and Child Health IRCCS Burlo Garofolo Trieste Italy

2. LARC ‐ Laboratory Animal Research Center Qatar University Doha Qatar

3. Department of Medicine, Surgery and Health Sciences University of Trieste Trieste Italy

Abstract

AbstractPhotobiomodulation therapy (PBMT) is known as a complementary tool to alleviate pain sensation in patients, nevertheless, there is still a gap of knowledge on its mechanism of action, thus limiting its clinical employment. In this study, a possible molecular mechanism of the 905 nm PBMT (0.25 W/cm2; 3, 6, 12, and 18 J/cm2, 5 Hz) analgesic effect was tested on 50B11 cells, by investigating its impact on mitochondria. A decrement of adenosine triphosphate was detected, moreover, an increment of total reactive oxygen species and mitochondrial superoxide anion was found after PBMT with all protocols tested. PBMT at 18 J diminished the mitochondrial membrane potential, and influenced mitochondrial respiration, decreasing the oxygen consumption rate. Finally, a decrement of extracellular signal‐regulated kinase 1/2 phosphorylation was observed with the protocol using 12 J. Taken together these findings highlighted the intracellular effects, mainly correlated to mitochondrial, induced by 905 nm PBMT in sensory neurons, indicating the central role of this organelle in the cellular response to 905 nm near‐infrared laser light.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3