Four‐Membered Ring‐Embedded Cycloarene Enabling Anti‐Aromaticity and Ultra‐Narrowband Emission

Author:

Zhang Rong1,Xiong Zuping2,An Dongyue1,Zhu Jiangyu1,Gu Yuanhe1,Zhang Haoke2,Zhou Gang3,Liu Yunqi14,Lu Xuefeng1ORCID

Affiliation:

1. Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China

2. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310058 China

3. Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China

4. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractThe synthesis of fully fused π‐conjugated cycloarenes embedded with nonbenzenoid aromatics is challenging. In this work, the first example of four‐membered ring‐embedded cycloarene (MF2) was designed and synthesized in single‐crystal form by macrocyclization and ring fusion strategies. For comparison, single bond‐linked chiral macrocycle MS2 without two fused four‐membered rings and its linear‐shaped polycyclic benzenoid monomer L1 were also synthesized. The pronounced anti‐aromaticity of four‐membered rings significantly adjusts the electronic structures and photophysical properties of cycloarene, resulting in an enhancement of the photoluminescence quantum yield (PLQY) from 10.66 % and 10.74 % for L1 and MS2, respectively, to 54.05 % for MF2, which is the highest PLQY among the reported cycloarenes. Notably, owing to the embedded anti‐aromatic four‐membered rings that reduce structural displacements, MF2 exhibits an ultra‐narrowband emission with a single‐digit full‐width at half‐maximum (FWHM) of only 7 nm (0.038 eV), which sets a new record among all reported organic narrowband luminescent molecules, and represents the first example of ultra‐narrowband emission in conventional polycyclic aromatic hydrocarbons (PAHs) devoid of heteroatoms.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3