Electrocatalytic Synthesis of Nylon‐6 Precursor at Almost 100 % Yield

Author:

Wu Yandong1,Chen Wei1,Jiang Yimin1,Xu Yanzhi2,Zhou Bo1,Xu Leitao1,Xie Chao1,Yang Ming1,Qiu Mengyi1,Wang Dongdong1,Liu Qie1,Liu Qinghua2,Wang Shuangyin1ORCID,Zou Yuqin13ORCID

Affiliation:

1. State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 P. R. China

2. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230029 P. R. China

3. School of Chemistry and Chemical Engineering Jishou University Jishou 416000 P. R. China

Abstract

AbstractSynthesis of cyclohexanone oxime via the cyclohexanone‐hydroxylamine process is widespread in the caprolactam industry, which is an upstream industry for nylon‐6 production. However, there are two shortcomings in this process, harsh reaction conditions and the potential danger posed by explosive hydroxylamine. In this study, we presented a direct electrosynthesis of cyclohexanone oxime using nitrogen oxides and cyclohexanone, which eliminated the usage of hydroxylamine and demonstrated a green production of caprolactam. With the Fe electrocatalysts, a production rate of 55.9 g h−1 gcat−1 can be achieved in a flow cell with almost 100 % yield of cyclohexanone oxime. The high efficiency was attributed to their ability of accumulating adsorbed hydroxylamine and cyclohexanone. This study provides a theoretical basis for electrocatalyst design for C−N coupling reactions and illuminates the tantalizing possibility to upgrade the caprolactam industry towards safety and sustainability.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3