Redox‐Active Ferrocene Quencher‐Based Supramolecular Nanomedicine for NIR‐II Fluorescence‐Monitored Chemodynamic Therapy

Author:

Yu Meili1,Ye Zhuangjie1,Liu Siqin1,Zhu Yang123,Niu Xuegang4,Wang Jun1,Ao Rujiang1,Huang Hongwei1,Cai Huilan1,Liu Yina1,Chen Xiaoyuan23ORCID,Lin Lisen1

Affiliation:

1. MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China

2. Departments of Diagnostic Radiology Surgery Chemical and Biomolecular Engineering and Biomedical Engineering Yong Loo Lin School of Medicine and College of Design and Engineering National University of Singapore Singapore 117597 Singapore

3. Institute of Molecular and Cell Biology Agency for Science, Technology, and Research (A*STAR) 61 Biopolis Drive, Proteos Singapore 138673 Singapore

4. Department of Neurosurgery Neurosurgery Research Institute the First Affiliated Hospital of Fujian Medical University Fuzhou 350005 China

Abstract

AbstractReal‐time monitoring of hydroxyl radical (⋅OH) generation is crucial for both the efficacy and safety of chemodynamic therapy (CDT). Although ⋅OH probe‐integrated CDT agents can track ⋅OH production by themselves, they often require complicated synthetic procedures and suffer from self‐consumption of ⋅OH. Here, we report the facile fabrication of a self‐monitored chemodynamic agent (denoted as Fc‐CD‐AuNCs) by incorporating ferrocene (Fc) into β‐cyclodextrin (CD)‐functionalized gold nanoclusters (AuNCs) via host–guest molecular recognition. The water‐soluble CD served not only as a capping agent to protect AuNCs but also as a macrocyclic host to encapsulate and solubilize hydrophobic Fc guest with high Fenton reactivity for in vivo CDT applications. Importantly, the encapsulated Fc inside CD possessed strong electron‐donating ability to effectively quench the second near‐infrared (NIR‐II) fluorescence of AuNCs through photoinduced electron transfer. After internalization of Fc‐CD‐AuNCs by cancer cells, Fenton reaction between redox‐active Fc quencher and endogenous hydrogen peroxide (H2O2) caused Fc oxidation and subsequent NIR‐II fluorescence recovery, which was accompanied by the formation of cytotoxic ⋅OH and therefore allowed Fc‐CD‐AuNCs to in situ self‐report ⋅OH generation without undesired ⋅OH consumption. Such a NIR‐II fluorescence‐monitored CDT enabled the use of renal‐clearable Fc‐CD‐AuNCs for efficient tumor growth inhibition with minimal side effects in vivo.

Funder

National Natural Science Foundation of China

National University of Singapore

National Medical Research Council

National Research Foundation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3