Microporous Hard Carbon Support Provokes Exceptional Performance of Single Atom Electrocatalysts for Advanced Air Cathodes

Author:

Liu Haijing1,Li Ping1,Fan Kaicai1,Lu Fenghong2,Sun Qi1,Zhang Qi1,Li Bin3,Shu Yajie4,Zong Lingbo1,Wang Lei1

Affiliation:

1. State Key Laboratory of Eco‐chemical Engineering College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 China

2. State Key Laboratory of Eco‐chemical Engineering College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao 266042 China

3. State Key Laboratory of Eco‐chemical Engineering College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China

4. National Local Joint Laboratory for Advanced Textile Processing and Clean Production Wuhan Textile University Wuhan 430200 China

Abstract

AbstractSingle atom catalysts embracing metal‐nitrogen (MNx) moieties show promising performance for oxygen reduction reaction (ORR). The modification on spatially confined microenvironments, which won copious attention with respect to achieving efficient catalysts, are auspicious but yet to be inspected for MNx moieties from modulating the energetics and kinetics of ORR. Here, Fe single atoms (SAs) are immobilized in microporous hard carbon (Fe‐SAs/MPC), in which the microporous structure with crumpled graphene sheets serves confined microenvironment for catalysis. Fe‐SAs/MPC holds a remarkable half‐wave potential of 0.927 V and excellent stability for ORR. Theoretical studies unveil that hydrogen bonding between the intermediate of O* and micropore interior surfaces substantially promote its protonation and accelerate the overall ORR kinetics. Both the aqueous and quasi‐solid‐state zinc‐air batteries driven by Fe‐SAs/MPC air cathode show excellent stability with small charging/discharging voltage gaps. Importantly, when used as the air cathode for industrial chlor‐alkali process, the applied voltage of Fe‐SAs/MPC‐based flow cell to reach 300 mA cm−2 is 1.57 V, which is 210 mV smaller than Pt/C‐based one. These findings provide in‐depth insights into the confined microenvironment of MNx moieties for boosted electrochemical performance, and pave the pathways for future catalyst development satisfying the requirement of industrial applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3