Probabilistic inference and Bayesian‐like estimation in animals: Empirical evidence

Author:

Valone Thomas J.1ORCID

Affiliation:

1. Department of Biology Saint Louis University Saint Louis Missouri USA

Abstract

AbstractAnimals often make decisions without perfect knowledge of environmental parameters like the quality of an encountered food patch or a potential mate. Theoreticians often assume animals make such decisions using a Bayesian updating process that combines prior information about the frequency distribution of resources in the environment with sample information from an encountered resource; such a process leads to decisions that maximize fitness, given the available information. I examine three aspects of empirical work that shed light on the idea that animals can make such decisions in a Bayesian‐like manner. First, many animals are sensitive to variance differences in behavioral options, one metric used to characterize frequency distributions. Second, several species use information about the relative frequency of preferred versus nonpreferred items in different populations to make probabilistic inferences about samples taken from populations in a manner that results in maximizing the likelihood of obtaining a preferred reward. Third, the predictions of Bayesian models often match the behavior of individuals in two main approaches. One approach compares behavior to models that make different assumptions about how individuals estimate the quality of an environmental parameter. The patch exploitation behavior of nine species of birds and mammals has matched the predictions of Bayesian models. The other approach compares the behavior of individuals who learn, through experience, different frequency distributions of resources in their environment. The behavior of three bird species and bumblebees exploiting food patches and fruit flies selecting mates is influenced by their experience learning different frequency distributions of food and mates, respectively, in ways consistent with Bayesian models. These studies lend support to the idea that animals may combine prior and sample information in a Bayesian‐like manner to make decisions under uncertainty, but additional work on a greater diversity of species is required to better understand the generality of this ability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3