Developing Neural Networks for Inverse Design of Chiral Metamaterials

Author:

Zhang Xiaoye1,Chen Xinyi2,Zhang Jinglan2,Zhang Fengyi1,Wang Yaxin1,Ai Bin2ORCID,Zhang Yongjun1,Zhao Xiaoyu1

Affiliation:

1. College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P. R. China

2. School of Microelectronics and Communication Engineering Chongqing Key Laboratory of Bio‐perception & Intelligent Information Processing Chongqing University Chongqing 401331 P. R. China

Abstract

AbstractChiral metamaterials, renowned for their unique optical properties such as circular dichroism, are pivotal in applications like spectroscopy, sensing, and imaging. However, their inherent asymmetry and complex light‐matter interactions present substantial design challenges. This study harnesses the power of deep neural networks (DNNs) for the inverse design of chiral nanohole arrays (CNAs). A bidirectional neural network (Bi‐DNN) is developed to address the one‐to‐many mapping issue, achieving high prediction accuracy (0.98). Various input‐output configurations are examined, including combining inputs and leveraging different input‐output models (e.g., using left‐handed circularly polarized light spectra to predict right‐handed circularly polarized spectra), enhancing prediction precision while reducing experimental workload. Additionally, the potential of CNAs as high‐performance surface‐enhanced Raman spectroscopy substrates for chiral detection is demonstrated. The Bi‐DNN enabled rapid and accurate design solutions, showing strong agreement with experimental validations. These findings emphasize the transformative role of DNNs in advancing chiral metamaterial design, unlocking efficient and customizable optical materials for next‐generation sensing and imaging technologies.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3