Affiliation:
1. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China
3. Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
Abstract
AbstractZero‐dimensional (0D) lead‐free metal halides with efficient photoluminescence (PL) have wide application prospects in the optoelectronics field due to their unique structures and physicochemical properties. However, thermal quenching seriously hinders the practical applications of metal halide materials. Herein, this challenging effort is spearheaded to design novel lead‐free 0D indium‐based chloride K3InCl6:Sb3+ single crystals with zero‐thermal quenching and a near‐unity PL quantum yield based on an effective strategy to suppress non‐radiative transitions. Experimental and computational studies indicate that the intense PL emission originates from self‐trapping excitons (STEs). The extremely low temperature of 7 K and time‐resolved spectra reveal the existence of two individual STEs emissions induced by the distinguished octahedrons in K3InCl6:Sb3+ crystals. Meanwhile, the K3InCl6:Sb3+ crystals can maintain PL stability without thermal quenching over a wide temperature range. Furthermore, the phosphor‐converted light‐emitting diodes can stably operate in the long term, benefitting from the significant structural and PL stability of Sb3+‐doped 0D indium‐based chlorides. Therefore, this work not only presents new 0D metal halides with high efficiency and remarkable stability, but also provides insights into designing high‐performance optoelectronic materials.
Funder
National Science and Technology Major Project
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献