High Performance Balanced Linear Polarization Photodetector Based on 2D ReS2

Author:

Hu Yibiao123,He Jiajing23ORCID,Yan Zhouyuan23,Xu Chang23,Li Xiaobo23,Wei Ning23,Wang Yan23,Dong Ningning23,Wang Jun1234ORCID

Affiliation:

1. School of Physical Sciences University of Science and Technology of China Hefei Anhui 230026 China

2. Aerospace Laser Technology and System Department Wangzhijiang Innovation Center for Laser Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

3. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

4. State Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

Abstract

AbstractConventional research on linear polarization photodetector for 2D materials has focused on the search for different anisotropic materials, combinations between materials, introducing plasmonic structures, and patterning 2D materials to improve performance. However, these methods provide limited improvement in polarization sensitivity. Here, a balanced photodetector structure is proposed that does not require an additional process and relies only on the presence of anisotropy in the material itself to substantially improve the polarization sensitivity. The balanced photodetector consists of two ReS2 photodetectors, where the single ReS2 photodetector exhibits excellent performance at 650 nm illumination, including a responsivity and detectivity of 0.28 A W−1 and 4.22 × 109 Jones. Benefiting from the anisotropy of ReS2, the single photodetector achieves excellent polarization sensitivity of 2.79 at 650 nm. The balanced photodetector system achieves an excellent performance of ≈20 dB linear polarization extinction ratio and 0.003° Hz−1/2 noise equivalent light polarization difference at 100 kHz. These performances can also be further optimized by adjusting the gate voltage. The results provide a basis for further development of high‐performance polarization photodetector for 2D materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3