Advances in Dynamic Light Scattering Imaging of Blood Flow

Author:

Sdobnov Anton1,Piavchenko Gennadii2,Bykov Alexander1,Meglinski Igor123ORCID

Affiliation:

1. Optoelectronics and Measurement Techniques University of Oulu Oulu 90570 Finland

2. Department of Histology, Cytology and Embryology Institute of Clinical Medicine N.V. Sklifosovsky I.M. Sechenov First Moscow State Medical University 8‐2 Trubetskaya str. Moscow 119991 Russia

3. College of Engineering and Physical Sciences Aston University Birmingham B4 7ET UK

Abstract

AbstractDynamic light scattering (DLS) is a well known experimental approach uniquely suited for the characterization of small particles undergoing Brownian motion in randomly inhomogeneous turbid scattering medium, including water suspension, polymers in solutions, cells cultures, and so on. DLS is based on the illuminating of turbid medium with a coherent laser light and further analyzes the intensity fluctuations caused by the motion of the scattering particles. The DLS‐based spin‐off derivative techniques, such laser Doppler flowmetry (LDF), diffusing wave spectroscopy (DWS), laser speckle contrast imaging (LSCI), and Doppler optical coherence tomography (DOCT), are exploited widely for non‐invasive imaging of blood flow in brain, skin, muscles, and other biological tissues. The recent advancements in the DLS‐based imaging technologies in frame of their application for brain blood flow monitoring, skin perfusion measurements, and non‐invasive blood micro‐circulation characterization are overviewed. The fundamentals, breakthrough potential, and practical findings revealed by DLS‐based blood flow imaging studies, including the limitations and challenges of the approach such as movement artifacts, non‐ergodicity, and overcoming high scattering properties of studied medium, are also discussed. It is concluded that continued research and further technological advancements in DLS‐based imaging will pave the way for new exciting developments and insights into blood flow diagnostic imaging.

Funder

H2020 European Research Council

Russian Science Foundation

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3