Integrated Quad‐Color Nanoprinting and Tri‐Channel Holographic Encryption Meta‐Marks with Printable Metasurfaces

Author:

Gong Jintao12,Xiong Lingxing123,Zhang Fei12,Pu Mingbo124,Hong Minghui25,Luo Xiangang124ORCID

Affiliation:

1. National Key Laboratory of Optical Field Manipulation Science and Technology Chinese Academy of Sciences Chengdu 610209 China

2. State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐Engineering Institute of Optics and Electronics Chinese Academy of Sciences Chengdu 610209 China

3. Key Laboratory for Information Science of Electromagnetic Waves (MoE) Fudan University Shanghai 200433 China

4. College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China

5. Department of Electrical and Computer Engineering National University of Singapore Singapore 117576 Singapore

Abstract

AbstractOptical metasurfaces offer innovative approaches to manipulate the amplitude, phase, frequency, and polarization of light in localized regions, thus paving the way for a viable technology that can be applied in various domains, including structural coloration, multiplexed holography, and high‐resolution displays. To address the escalating need for sophisticated encryption, a novel quadruple‐security flexible plasmonic anti‐counterfeiting platform is proposed that utilizes printable centimeter‐scale (0.6 cm) metasurfaces. These metasurfaces feature four distinct signatures: They appear as color images under ambient incoherent white light, while projecting up to three different holograms under red, green, or blue circularly polarized laser illumination. Such holographic color nanoprintings are not only easily authenticated but also difficult to imitate, offering enhanced security in anti‐counterfeiting applications. The design of these multifunctional metasurfaces, which encode information solely in the surface relief of a single polymeric material with a silver coating, allows for efficient mass production through UV nanoimprinting lithography. Given the superior performance of these multifunctional plasmonic metasurfaces, this work presents tremendous potential in various fields such as multi‐level information security, cost‐effective anti‐counterfeiting, and many others.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3