3D printing modality effect: Distinct printing outcomes dependent on selective laser sintering (SLS) and melt extrusion

Author:

Park Jeong Hun12ORCID,Tucker Sarah Jo3,Yoon Jeong‐Kee4,Kim YongTae156,Hollister Scott J.12

Affiliation:

1. Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia USA

2. Center for 3D Medical Fabrication Georgia Institute of Technology and Emory University Atlanta Georgia USA

3. Global Center for Medical Innovation Atlanta Georgia USA

4. Department of Systems Biotechnology Chung‐Ang University Anseong‐si Gyeonggi‐do Republic of Korea

5. George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta Georgia USA

6. Parker H. Petit Institute for Bioengineering and Bioscience (IBB) Georgia Institute of Technology Atlanta Georgia USA

Abstract

AbstractA direct and comprehensive comparative study on different 3D printing modalities was performed. We employed two representative 3D printing modalities, laser‐ and extrusion‐based, which are currently used to produce patient‐specific medical implants for clinical translation, to assess how these two different 3D printing modalities affect printing outcomes. The same solid and porous constructs were created from the same biomaterial, a blend of 96% poly‐ε‐caprolactone (PCL) and 4% hydroxyapatite (HA), using two different 3D printing modalities. Constructs were analyzed to assess their printing characteristics, including morphological, mechanical, and biological properties. We also performed an in vitro accelerated degradation study to compare their degradation behaviors. Despite the same input material, the 3D constructs created from different 3D printing modalities showed distinct differences in morphology, surface roughness and internal void fraction, which resulted in different mechanical properties and cell responses. In addition, the constructs exhibited different degradation rates depending on the 3D printing modalities. Given that each 3D printing modality has inherent characteristics that impact printing outcomes and ultimately implant performance, understanding the characteristics is crucial in selecting the 3D printing modality to create reliable biomedical implants.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3