Joint analysis of multiple phenotypes for extremely unbalanced case‐control association studies

Author:

Xie Hongjing1,Cao Xuewei1ORCID,Zhang Shuanglin1ORCID,Sha Qiuying1ORCID

Affiliation:

1. Department of Mathematical Sciences Michigan Technological University Houghton Michigan USA

Abstract

AbstractIn genome‐wide association studies (GWAS) for thousands of phenotypes in biobanks, most binary phenotypes have substantially fewer cases than controls. Many widely used approaches for joint analysis of multiple phenotypes produce inflated type I error rates for such extremely unbalanced case‐control phenotypes. In this research, we develop a method to jointly analyze multiple unbalanced case‐control phenotypes to circumvent this issue. We first group multiple phenotypes into different clusters based on a hierarchical clustering method, then we merge phenotypes in each cluster into a single phenotype. In each cluster, we use the saddlepoint approximation to estimate the p value of an association test between the merged phenotype and a single nucleotide polymorphism (SNP) which eliminates the issue of inflated type I error rate of the test for extremely unbalanced case‐control phenotypes. Finally, we use the Cauchy combination method to obtain an integrated p value for all clusters to test the association between multiple phenotypes and a SNP. We use extensive simulation studies to evaluate the performance of the proposed approach. The results show that the proposed approach can control type I error rate very well and is more powerful than other available methods. We also apply the proposed approach to phenotypes in category IX (diseases of the circulatory system) in the UK Biobank. We find that the proposed approach can identify more significant SNPs than the other viable methods we compared with.

Publisher

Wiley

Subject

Genetics (clinical),Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3