Influence of Preheating Temperature on Microstructure Evolution and Hardness of High‐Speed Steel AISI M50 Processed by Laser Powder Bed Fusion

Author:

Qin Siyuan1ORCID,Saewe Jasmin2,Kunz Johannes3,Herzog Simone1,Kaletsch Anke13,Schleifenbaum Johannes Henrich4,Broeckmann Christoph13

Affiliation:

1. Chair and Institute for Materials Applications in Mechanical Engineering RWTH Aachen University (IWM) 52064 Aachen Germany

2. Laser Technology Fraunhofer Institute for Laser Technology (ILT) 52074 Aachen Germany

3. Institute of Applied Powder Metallurgy and Ceramics RWTH Aachen University e.V. (IAPK) 52064 Aachen Germany

4. Digital Additive Production RWTH Aachen University (DAP) 52074 Aachen Germany

Abstract

The laser powder bed fusion (LPBF) technology has been involved in the tooling industry to produce tools with complex geometry and integrated functions. However, tool steels with high carbon content tend to crack due to the thermal stresses during the LPBF process. One solution is increasing the powder bed temperature to avoid large thermal gradients. In the present study, the influence of the preheating temperature on microstructure and corresponding hardness is systematically investigated. With the help of time–temperature–transformation diagram, the phase evolution during the LPBF process is systematically explained. AISI M50 samples are produced by LPBF from room temperature to a preheating temperature of 650 °C. Higher preheating temperatures shift the optimal laser parameter window to lower volume energy densities. A cellular/dendritic microstructure formed during the rapid solidification with retained austenite is located at the interdendritic regions. Moreover, a high preheating temperature reduces the retained austenite fraction, specifically from 39% without preheating to 7.6% at 650 °C preheating temperature.

Funder

European Regional Development Fund

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3