Continuous Hot‐Dip Galvanizing of Medium‐Manganese Third‐Generation Advanced High‐Strength Steels

Author:

Bhadhon Kazi M. H.1ORCID,Pallisco Daniella M.1ORCID,McDermid Joseph R.1

Affiliation:

1. Department of Materials Science and Engineering McMaster University Hamilton Ontario L8S 4L8 Canada

Abstract

The effects of process atmosphere oxygen partial pressure (pO2) on the preimmersion surface structures, interfacial reactive wetting products, and reactive wetting mechanisms of two prototype (0.15–0.20)C–(5.6–5.9)Mn–(0.4–1.9)Al–(1.1–1.5)Si–(0–0.6)Cr (wt%) third‐generation advanced high‐strength steels during continuous hot‐dip galvanizing are determined. In this study, the two‐stage thermal processing routes employed comprise an austenitization anneal followed by flash pickling and an intercritical anneal. All annealing treatments are conducted in a N2–5 vol% H2 process atmosphere with a controlled dew point. The substrates are austenitized at dew points of –30 or –10 °C, intercritically annealed at a dew point of –30, –10, or +5 °C, and then galvanized using a conventional 0.2 wt% Al (dissolved) bath. The preimmersion surfaces comprise a near‐pure Fe layer with dispersed nanoscaled oxide nodules. The primary reactive wetting mechanism is the direct wetting of the surface Fe, while oxide wetting, oxide cracking and liftoff, and oxide bridging by the liquid metal bath are secondary reactive wetting mechanisms. Zn ingress into the substrate via pores in the oxide network from selective dissolution during flash pickling is also noted. A well‐developed Fe2Al5–xZnx interfacial layer is observed for all metallic coating conditions. The resultant coatings show outstanding adherence after ASTM three‐point bend testing.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference76 articles.

1. D. K.Matlock J. G.Speer inProc. of the 3rd Int. Conf. on Structural Steels(Ed:H. C.Lee) Korean Institute of Metals and Materials Seoul Korea2006.

2. Greenhouse Gas Emissions Payback for Lightweighted Vehicles Using Aluminum and High-Strength Steel

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3