Di‐(2‐ethylhexyl) phthalate (DEHP) promoted hepatic lipid accumulation by activating Notch signaling pathway

Author:

Zhang Yuezhu1,Qian Honghao1,Wang Jia1,Zhu Ying1,Miao Xiaohan1,Li Xu1,Yin Jianli1,Zhang Ruxuan1,Ye Jiaming1,Huo Chuanyi1,Zhao Weisen1,Ye Lin1ORCID

Affiliation:

1. Department of Occupational and Environmental Health, School of Public Health Jilin University Changchun China

Abstract

AbstractDi‐(2‐ethylhexyl) phthalate (DEHP) and mono‐2‐ethylhexyl phthalate (MEHP) can induce hepatic lipid metabolism disorders, while the molecular mechanism still remain unknown. We aim to explore the underlying mechanism of Notch signaling pathway on hepatic lipid accumulation induced by DEHP/MEHP. A total of 40 male wistar rats were exposed to DEHP (0, 5, 50, and 500 mg/kg/d) for 8 weeks, BRL‐3A hepatocytes were exposed to MEHP (0, 10, 50, 100, and 200 μM) for 24 h. About 50 μM DAPT and 100 μg/mL Aspirin were used to inhibit Notch pathway and prevent inflammation, respectively. Real‐Time PCR was performed to detect the mRNA expression, western blot and immunofluorescence were used to detect the protein expression. Lipids and inflammatory factors levels were determined by commercial kits. The results showed that DEHP/MEHP promoted the expression of Notch pathway molecules and lipids accumulation in rat livers/BRL‐3A cells. The up‐regulated Notch receptors were correlated with the TG levels in the rat liver. MEHP increased the levels of IL‐8 and IL‐1β. The lipids levels were reduced after anti‐inflammation. The inhibition of Notch pathway reversed the elevation of inflammation and lipid accumulation caused by MEHP. In conclusion, this study demonstrated that DEHP/MEHP led to lipid accumulation in hepatocytes by up‐regulating Notch pathway and the inflammation might play a key role in the process.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3