Sublethal and transgenerational effects of broflanilide on the citrus red mite, Panonychus citri

Author:

Li Ke12,Ren Yiting12,Liu Xun‐Yan12,Pan Deng12,Dou Wei12ORCID,Wang Jin‐Jun12,Yuan Guorui12ORCID

Affiliation:

1. Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection Southwest University Chongqing China

2. Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences Southwest University Chongqing China

Abstract

AbstractBACKGROUNDThe citrus red mite, Panonychus citri is a serious pest of the citrus industry and has developed resistance to many acaricides. Broflanilide is a novel meta‐diamide insecticide that binds to a new site on the γ ‐aminobutyric acid receptor with high potency against pests. However, little information has been reported about its effect on the citrus red mite.RESULTSBroflanilide exhibited higher toxicity to female adults and eggs of a laboratory strain of P. citri The median lethal concentration (LC50), 9.769 mg/L and 4.576 mg/L, respectively) than other commonly used acaricides and was also toxic to two P. citri field strains. Broflanilide treatment with LC10, LC20, and LC30 significantly decreased the fecundity and longevity of female adults of F0 P. citri compared with the control. The duration of larva, protonymph, deutonymph and adult, and total life span in the F1 generation were significantly reduced after treatment of F0 with broflanilide. Population parameters, including the intrinsic rate of increase (r) and finite rate of increase (λ), were significantly increased, and the mean generation time (T) of F1 progeny was significantly reduced in the LC20 treatment. The predicted population size of F1 increased when parental female adults were treated with sublethal concentrations.CONCLUSIONBroflanilide had high acaricidal activity toward P. citri, and exposure to a sublethal concentration significantly inhibited the population growth of F0. The transgenerational hormesis effect is likely to cause population expansion of F1. More attention should be paid when broflanilide is applied to control P. citri in citrus orchards. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3