Ecological benefits of strategically applied livestock grazing in sagebrush communities

Author:

Davies Kirk W.1,Boyd Chad S.1,Bates Jon D.1,Svejcar Lauren N.1ORCID,Porensky Lauren M.2ORCID

Affiliation:

1. United States Department of Agriculture – Agricultural Research Service Burns Oregon USA

2. United States Department of Agriculture – Agricultural Research Service Fort Collins Colorado USA

Abstract

AbstractThere are concerns about the negative consequences of non‐native livestock grazing of sagebrush communities, especially since these communities are experiencing unpreceded threats from invasive annual grasses, altered fire regimes, and climate change. The narrative around grazing often focuses on the effects of heavy, repeated growing season use that were common historically but now are rare or localized (e.g., near water sources). At the same time, the potential for ecological benefits of strategically applied grazing is often overlooked, limiting management options that may promote desired outcomes. To improve management in the face of unprecedented threats, we synthesized the literature to investigate and identify potential ecological benefits of strategically applied livestock grazing in sagebrush communities. We found that grazing can be used to modify fine fuel characteristics in ways that decrease fire probability and severity in sagebrush communities. Pre‐fire moderate grazing may be especially important because it decreases fire severity and, thereby, promotes biodiversity and reduces postfire annual grass invasion, fire‐induced mortality of native bunchgrasses, and fire damage to soil biocrusts. Grazing can create and maintain fine fuel breaks to improve firefighter safety and fire suppression efficiency. Strategic grazing can also be used to promote desirable plant community composition. Grazing can be a valuable tool, that is currently underutilized, for achieving desired management outcomes in the sagebrush and likely other ecosystems. Improper grazing can generate severe negative consequences; therefore, successful application of grazing to achieve desired outcomes will require careful attention to plant community response and balancing management objectives with community constraints.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3