Oxidative stress in SEPN1‐related myopathy: From pathophysiology to treatment

Author:

Arbogast Sandrine,Beuvin Maud,Fraysse Bodvaël,Zhou Haïyan,Muntoni Francesco,Ferreiro Ana

Abstract

AbstractObjectiveMutations of the selenoprotein N gene (SEPN1) cause SEPN1‐related myopathy (SEPN1‐RM), a novel early‐onset muscle disorder formerly divided into four different nosological categories. Selenoprotein N (SelN) is the only selenoprotein involved in a genetic disease; its function being unknown, no treatment is available for this potentially lethal disorder. Our objective was to clarify the role of SelN and the pathophysiology of SEPN1‐RM to identify therapeutic targets.MethodsWe established and analyzed an ex vivo model of SelN deficiency using fibroblast and myoblast primary cultures from patients with null SEPN1 mutations. DCFH assay, OxyBlot, Western blot, Fura‐2, and cell survival studies were performed to measure intracellular oxidant activity, oxidative stress markers, calcium handling, and response to exogenous treatments.ResultsSelN‐depleted cells showed oxidative/nitrosative stress manifested by increased intracellular oxidant activity (reactive oxygen species and nitric oxide) and/or excessive oxidation of proteins, including the contractile proteins actin and myosin heavy chain II in myotubes. SelN‐devoid myotubes showed also Ca2+ homeostasis abnormalities suggesting dysfunction of the redox‐sensor Ca2+ channel ryanodine receptor type 1. Furthermore, absence of SelN was associated with abnormal susceptibility to H2O2‐induced oxidative stress, demonstrated by increased cell death. This cell phenotype was restored by pretreatment with the antioxidant N‐acetylcysteine.InterpretationSelN plays a key role in redox homeostasis and human cell protection against oxidative stress. Oxidative/nitrosative stress is a primary pathogenic mechanism in SEPN1‐RM, which can be effectively targeted ex vivo by antioxidants. These findings pave the way to SEPN1‐RM treatment, which would represent a first specific pharmacological treatment for a congenital myopathy. Ann Neurol 2009;65:677–686

Publisher

Wiley

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Congenital Myopathies;Swaiman's Pediatric Neurology;2026

2. Zebrafish and cellular models of SELENON-Congenital myopathy exhibit novel embryonic and metabolic phenotypes;Skeletal Muscle;2025-03-15

3. A case report of SEPN1-related myopathy: Expanding the spectrum of clinical, genetic and radiological features;Neurology Asia;2025-03

4. The congenital myopathies;Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease;2025

5. Muscle Involvement and Restricted Disorders;Volpe's Neurology of the Newborn;2025

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3