Characteristics of compressive failure behavior of polyacrylonitrile‐based carbon fiber multifilament

Author:

Zou Wanyan1,Tong Yuanjian1,Wang Yu1,Qi Yan1,Wang Xiaolong1,Xu Lianghua1ORCID

Affiliation:

1. Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology Beijing China

Abstract

AbstractThe deformation characteristics exhibited by the hierarchical structure in composites and their influence on compressive properties are investigated by controlling the deformation of carbon fiber multifilament under axial compressive loading. Our findings reveal that the deformation curve of carbon fiber composite materials under axial compression loads is nonlinear. Specifically, for 12 K high‐strength and medium‐modulus carbon fiber multifilament, when the compression load exceeds approximately 600 N, the buckling of individual fibers leads to shear deformation that damages the interface between the fiber and resin. Consequently, the compressive deformation of the multifilament composites transitions from elastic to plastic deformation. By enhancing the support force exerted by the resin on the multifilament composite and reducing the load span within the range of 2–4 mm, it is possible to effectively minimize or eliminate the overall buckling that may occur during the compression process of the multifilament composite. This results in a higher secant modulus under the same level of deformation. Additionally, it reduces the step difference between the compression and tension regions in the cross‐section of carbon fiber formed by the buckling, while the compression strength of the carbon fiber multifilament increases from 2.32 to 4.78 GPa.Highlights Characteristics of compression deformation of carbon fiber multifilament. Regulation of the degree of buckling of carbon fiber multifilament. Cross‐section morphology under different compression failure mechanisms. Influence of the degree of buckling on compressive properties of carbon fiber.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3