The computational molecular technology for complex reaction systems: The Red Moon approach

Author:

Nagaoka Masataka123ORCID

Affiliation:

1. Graduate School of Informatics Nagoya University Nagoya Japan

2. Future Value Creation Research Center Nagoya University Nagoya Japan

3. Institute of Materials Innovation, Institute of Innovation for Future Society Nagoya University Nagoya Japan

Abstract

AbstractFor dealing with complex reaction (CR) systems that show typical chemical phenomena in molecular aggregation states, the Red Moon (RM) approach is introduced based on a new efficient and systematic RM methodology. First, the theoretical background with my motivation to develop the RM approach is presented from the recent necessity to perform ‘atomistic’ molecular simulation of large‐scale and long‐term phenomena of (i) complex chemical reactions, (ii) stereospecificity, and (iii) aggregation structures. The RM methodology uses both the molecular dynamics (MD) method for molecular motions (translation, rotation, and vibration of molecules) that frequently occur on a short‐time scale and the Monte Carlo (MC) method for rare events such as chemical reactions that hardly do on that time scale. Then, under the transition rate using both the potential energy difference before and after a rare event trial and its chemical kinetic probability, it is tested and judged by the MC method whether the trial is possible (Metropolis method). Next, typical applications of the RM approach are reviewed in two main research fields, (i) polymerization and (ii) storage battery (rechargeable battery or secondary cell), with various examples of our successful studies. Finally, we conclude that the RM approach using the RM methodology should become an efficient new‐generation approach as one promising computational molecular strategy (CMT). We believe it will play an essential role in surveying, at the multilevel resolution, various specificities of CR systems in molecular aggregation states.This article is categorized under: Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics Structure and Mechanism > Reaction Mechanisms and Catalysis Molecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo Methods

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Agency

Research Institute for Science and Technology, Tokyo Denki University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3