Deep learning convolutional neural network ResNet101 and radiomic features accurately analyzes mpMRI imaging to predict MGMT promoter methylation status with transfer learning approach

Author:

Shim Seong‐O1ORCID,Hussain Lal23ORCID,Aziz Wajid3,Alshdadi Abdulrahman A.4,Alzahrani Abdulrahman5ORCID,Omar Abdulfattah6

Affiliation:

1. Department of Computer and Network Engineering, College of Computer Science and Engineering University of Jeddah Jeddah Saudi Arabia

2. Department of Computer Science & IT, Neelum Campus The University of Azad Jammu and Kashmir Muzaffarabad Pakistan

3. Department of Computer Science & IT, King Abdullah Campus The University of Azad Jammu and Kashmir Muzaffarabad Pakistan

4. Department of Computer Science and AI, College of Computer Science and Engineering University of Jeddah Jeddah Saudi Arabia

5. Department of Information System and Technology, College of Computer Science and Engineering University of Jeddah Jeddah Saudi Arabia

6. College of Science & Humanities Prince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia

Abstract

AbstractAccurate brain tumor classification is crucial for enhancing the diagnosis, prognosis, and treatment of glioblastoma patients. We employed the ResNet101 deep learning method with transfer learning to analyze the 2021 Radiological Society of North America (RSNA) Brain Tumor challenge dataset. This dataset comprises four structural magnetic resonance imaging (MRI) sequences: fluid‐attenuated inversion‐recovery (FLAIR), T1‐weighted pre‐contrast (T1w), T1‐weighted post‐contrast (T1Gd), and T2‐weighted (T2). We assessed the model's performance using standard evaluation metrics. The highest performance to detect MGMT methylation status for patients suffering glioblastoma was an accuracy (85.48%), sensitivity (80.64%), specificity (90.32%). Whereas classification performance with no tumor was yielded with accuracy (85.48%), sensitivity (90.32%), specificity (80.64%). The radiomic features (74) computed with ensembled Bagged Tree and relief feature selection method (30/74) improved the validation accuracy of 84.3% and AUC of 0.9038 to detect. O6‐methylguanine‐DNA methyltransferase (MGMT) promoter methylation status in glioblastoma patients holds promise for optimizing treatment planning and prognosis. By understanding MGMT methylation status, clinicians can make informed decisions about treatment strategies, potentially leading to improved clinical outcomes.

Funder

University of Jeddah

Prince Sattam bin Abdulaziz University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer Vision-Based Mobile Sorting System System Construction and Experimental Test;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3