Filtered reaction rate and interphase mass transfer models in reactive gas‐solid flows

Author:

Huang Zheqing12ORCID,Zhang Zheng12,Wang Lingxue12ORCID,Zhou Qiang12ORCID

Affiliation:

1. School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an China

2. Shaanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University Xi'an China

Abstract

AbstractThis work pursues the closure for the effective reaction rate based on fine‐grid two‐fluid model (TFM) simulations in reactive gas‐solid flows. It is found that the mesoscale mechanism in the solid‐catalyzed reaction is constrained by the kinetic regime (KR) and the external mass transfer‐controlled regimes (EMTR). Thus, a filtered reaction rate model ηsubgrid considered two different regimes is proposed. The mesoscale effectiveness factor proposed in previous work is adopted in KR. A filtered interphase mass transfer model QM, which is constructed by analogy to the interphase heat transfer model, is used in EMTR. ηsubgrid shows a good predictability in two regimes via a priori test. The fidelity of ηsubgrid is also assessed via a filtered TFM simulation. The results indicate that the simulations incorporating corrections for the drag force and reaction rate yield better agreement with the fine‐grid simulations for both mass fraction and reaction rate profiles.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3