A Protonated Cytidine Stabilizes the Ligand‐Binding Pocket in the PreQ1 Riboswitch in Thermophilic Bacteria

Author:

Rückriegel Stefanie1,Hohmann Katharina F.1,Fürtig Boris1ORCID

Affiliation:

1. Institute for Organic Chemistry and Chemical Biology Johann Wolfgang Goethe University Max von Laue Str. 11 60438 Frankfurt am Main Germany

Abstract

AbstractRiboswitches are bacterial mRNA structure elements regulating either transcription or translation of downstream genes in response to high‐affinity binding of a low molecular weight ligand. Among this diverse group of RNA structures, the class‐I preQ1 sensing riboswitches (QSW) stand out since they are the smallest known natural riboswitches. The preQ1 sensing riboswitches combine ligand sensing and functional control within a single structural domain that adopts a pseudoknot conformation encapsulating both the cognate ligand and the ribosome binding site. preQ1 sensing riboswitches also occur in thermophilic bacteria. In these cases, their tertiary structures have to be stable even at temperatures above 60 °C to be functional at the organism's optimal growth temperatures. Despite the available high‐resolution structures of these riboswitches, it is not yet understood which tertiary interactions are primarily responsible for their exceptional temperature stability. Here, we show that an intricate three‐dimensional network of non‐canonical interactions involving various non‐neighboring nucleobases is the origin of the riboswitch's thermostability. An essential part of this network is a so far undetected stably protonated cytidine. It is characterized by an exceptional high pKA value of >9.7 and could be unambiguously identified through the application of modern heteronuclear detected NMR experiments. Thus, the presence or absence of a single proton can modulate the formation of an RNA tertiary structure and ligand binding capacity under extreme environmental conditions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Organic Chemistry,Molecular Biology,Molecular Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3