A review on manufacturing processes of cobalt‐chromium alloy implants and its impact on corrosion resistance and biocompatibility

Author:

Mani Gopinath1ORCID,Porter Deanna1,Collins Shell1,Schatz Tim1,Ornberg Andreas1,Shulfer Robert1

Affiliation:

1. Global Biocompatibility and Science & Technology Organization Abbott St. Paul Minnesota USA

Abstract

AbstractCobalt‐Chromium (CoCr) alloys are currently used for various cardiovascular, orthopedic, fracture fixation, and dental implants. A variety of processes such as casting, forging, wrought processing, hot isostatic pressing, metal injection molding, milling, selective laser melting, and electron beam melting are used in the manufacture of CoCr alloy implants. The microstructure and precipitates (carbides, nitrides, carbonitrides, and intermetallic compounds) formed within the alloy are primarily determined by the type of manufacturing process employed. Although the effects of microstructure and precipitates on the physical and mechanical properties of CoCr alloys are well reviewed and documented in the literature, the effects on corrosion resistance and biocompatibility are not comprehensively reviewed. This article reviews the various processes used to manufacture CoCr alloy implants and discusses the effects of manufacturing processes on corrosion resistance and biocompatibility. This review concludes that the microstructure and precipitates formed in the alloy are unique to the manufacturing process employed and have a significant impact on the corrosion resistance and biocompatibility of CoCr alloys. Additionally, a historical and scientific overview of corrosion and biocompatibility for metallic implants is included in this review. Specifically, the failure of CoCr alloys when used in metal‐on‐metal bearing surfaces of total hip replacements is highlighted. It is recommended that the type of implant/application (orthopedic, dental, cardiovascular, etc.) should be the first and foremost factor to be considered when selecting biomaterials for medical device development.

Publisher

Wiley

Reference193 articles.

1. Chapter 1b Metallic Biomaterials: Cobalt-Chromium Alloys

2. ASTM F75‐23: Standard specification for cobalt‐28 chromium‐6 molybdenum alloy castings and casting alloy for surgical implants (UNS R30075). ASTM International.2023.

3. ASTM F799‐19: Standard specification for cobalt‐28 chromium‐6 molybdenum alloy forgings for surgical implants (UNS R31537 R31538 R31539). ASTM International.2019.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3