Cellulose nanocrystals‐reinforced dual crosslinked double network GelMA/hyaluronic acid injectable nanocomposite cryogels with improved mechanical properties for cartilage tissue regeneration

Author:

Jonidi Shariatzadeh Farinaz1ORCID,Solouk Atefeh1ORCID,Mirzadeh Hamid12,Bonakdar Shahin3,Sadeghi Davoud1,Khoulenjani Shadab Bagheri2

Affiliation:

1. Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran

2. Polymer and Color Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran

3. National Cell Bank Department Pasteur Institute of Iran Tehran Iran

Abstract

AbstractImprovement of mechanical properties of injectable tissue engineering scaffolds is a current challenge. The objective of the current study is to produce a highly porous injectable scaffold with improved mechanical properties. For this aim, cellulose nanocrystals‐reinforced dual crosslinked porous nanocomposite cryogels were prepared using chemically crosslinked methacrylated gelatin (GelMA) and ionically crosslinked hyaluronic acid (HA) through the cryogelation process. The resulting nanocomposites showed highly porous structures with interconnected porosity (>90%) and mean pore size in the range of 130–296 μm. The prepared nanocomposite containing 3%w/v of GelMA, 20 w/w% of HA, and 1%w/v of CNC showed the highest Young's modulus (10 kPa) and excellent reversibility after 90% compression and could regain its initial shape after injection by a 16‐gauge needle in the aqueous media. The in vitro results demonstrated acceptable viability (>90%) and migration of the human chondrocyte cell line (C28/I2), and chondrogenic differentiation of human adipose stem cells. A two‐month in vivo assay on a rabbit's ear model confirmed that the regeneration potential of the prepared cryogel is comparable to the natural autologous cartilage graft, suggesting it is a promising alternative for autografts in the treatment of cartilage defects.

Funder

National Institute for Medical Research Development

Publisher

Wiley

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3