New simulation insights on the structural transition mechanism of bovine rhodopsin activation

Author:

Damodaran Kamalesh12ORCID,Khan Taushif23ORCID,Bickel David23ORCID,Jaya Sreeshma4ORCID,Vranken Wim F.23ORCID,Sudandiradoss Chinnappan4ORCID

Affiliation:

1. Department of Integrative Biology, School of Bioscience and Technology Vellore Institute of Technology Vellore India

2. Interuniversity Institute of Bioinformatics in Brussels ULB/VUB Brussels Belgium

3. Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium

4. Department of Biotechnology, School of Biosciences and Technology Vellore Institute of Technology Vellore India

Abstract

AbstractInactive rhodopsin can absorb photons, which induces different structural transitions that finally activate rhodopsin. We have examined the change in spatial configurations and physicochemical factors that result during the transition mechanism from the inactive to the active rhodopsin state via intermediates. During the activation process, many existing atomic contacts are disrupted, and new ones are formed. This is related to the movement of Helix 5, which tilts away from Helix 3 in the intermediate state in lumirhodopsin and moves closer to Helix 3 again in the active state. Similar patterns of changing atomic contacts are observed between Helices 3 and 5 of the adenosine and neurotensin receptors. In addition, residues 220–238 of rhodopsin, which are disordered in the inactive state, fold in the active state before binding to the Gα, where it catalyzes GDP/GTP exchange on the Gα subunit. Finally, molecular dynamics simulations in the membrane environment revealed that the arrestin binding region adopts a more flexible extended conformation upon phosphorylation, likely promoting arrestin binding and inactivation. In summary, our results provide additional structural understanding of specific rhodopsin activation which might be relevant to other Class A G protein‐coupled receptor proteins.

Funder

Vlaams Supercomputer Centrum

Fonds Wetenschappelijk Onderzoek

Vlaamse regering

Publisher

Wiley

Subject

Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3