New insights into morphological adaptation in common mole‐rats (Cryptomys hottentotus hottentotus) along an aridity gradient

Author:

Merchant Hana N.12ORCID,Portugal Steven J.1,Bennett Nigel C.3,Janse van Vuuren Andries K.3,Faulkes Chris G.2,Bowen James4,Hart Daniel W.3

Affiliation:

1. Department of Biological Sciences, School of Life and Environmental Sciences Royal Holloway University of London Egham, Surrey UK

2. School of Biological and Behavioural Sciences Queen Mary University of London London UK

3. Department of Zoology and Entomology University of Pretoria Pretoria Gauteng South Africa

4. Faculty of Science, Technology, Engineering, and Mathematics Open University Milton Keynes UK

Abstract

AbstractMorphological adaptation is the change in the form of an organism that benefits the individual in its current habitat. Mole‐rats (family Bathyergidae), despite being subterranean, are impacted by both local and broad‐scale environmental conditions that occur above ground. Common mole‐rats (Cryptomys hottentotus hottentotus) present an ideal mammalian model system for the study of morphological variation in response to ecology, as this species is found along an aridity gradient and thus can be sampled from geographically non‐overlapping populations of the same species along an environmental longitudinal cline. Using the mass of five internal organs, ten skeletal measurements and 3D morphometric analyses of skulls, we assessed the morphology of wild non‐breeding individuals from five common mole‐rat populations in South Africa. We found that the body mass and mean relative mass of the spleen and kidneys in arid populations was larger, and individuals from arid regions possessed shorter legs and larger inter‐shoulder widths compared to individuals from mesic regions. Additionally, arid populations demonstrated greater skull depth, and shape change of features such as angular processes of the lower jaw than mesic individuals, indicating that these distinct geographic populations show differences corresponding to the aridity gradient, potentially in response to environmental factors such as the variation in food sources found between different habitats, in addition to different soil compositions found in the different regions. Arid populations potentially require a stronger jaw and neck musculature associated with mastication to chew xeric‐adapted plants and to dig through hard soil types, whereas mesic populations excavate through soft, looser soil and may make use of their front limbs to aid the movement of soils when digging. Aridity influences the morphology of this species and could indicate the impact of environmental changes on speciation and mammalian skull morphology.

Funder

Natural Environment Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3