Myelin figures from microbial glycolipid biosurfactant amphiphiles

Author:

Roy Debdyuti1,Chaleix Vincent2,Parikh Atul N.13,Baccile Niki4ORCID

Affiliation:

1. Biophysics Graduate Group University of California Davis California USA

2. Faculté des Sciences et Techniques, Laboratoire LABCiS – UR 22722 Université de Limoges Limoges France

3. Department of Biomedical Engineering University of California Davis California USA

4. Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP Sorbonne Université, Centre National de la Recherche Scientifique Paris France

Abstract

AbstractMyelin figures (MFs)—cylindrical lyotropic liquid crystalline structures consisting of concentric arrays of bilayers and aqueous media—arise from the hydration of the bulk lamellar phase of many common amphiphiles. Prior efforts have concentrated on the formation, structure, and dynamics of myelin produced by phosphatidylcholine (PC)‐based amphiphiles. Here, we study the myelinization of glycolipid microbial amphiphiles, commonly addressed as biosurfactants, produced through the process of fermentation. The hydration characteristics (and phase diagrams) of these biological amphiphiles are atypical (and thus their capacity to form myelin) because unlike typical amphiphiles, their molecular structure is characterized by two hydrophilic groups (sugar, carboxylic acid) on both ends with a hydrophobic moiety in the middle. We tested three different glycolipid molecules: C18:1 sophorolipids and single‐glucose C18:1 and C18:0 glucolipids, all in their nonacetylated acidic form. Neither sophorolipids (too soluble) nor C18:0 glucolipids (too insoluble) displayed myelin growth at room temperature (RT, 25°C). The glucolipid C18:1 (G‐C18:1), on the other hand, showed dense myelin growth at RT below pH 7.0. Examining their growth rates, we find that they display a linear (L, myelin length; t, time) growth rate, suggesting ballistic growth, distinctly different from the dependence, characterizing diffusive growth such as what occurs in more conventional phospholipids. These results offer some insight into lipidic mesophases arising from a previously unexplored class of amphiphiles with potential applications in the field of drug delivery.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3