Machine Learning‐Assisted Clustering of Nanoparticle‐Binding Peptides and Prediction of Their Properties

Author:

Kenry 12ORCID

Affiliation:

1. Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA

2. Department of Imaging Dana‐Farber Cancer Institute and Harvard Medical School Boston MA 02215 USA

Abstract

AbstractBioinspired and biomimetic nanostructures have attracted tremendous interest for theranostic and nanomedicine applications. Among the strategies employed to synthesize these nanostructures, surface functionalization and biomineralization of nanomaterials using peptides stand out due to the wide availability of peptides and their variations as well as the ease of modification process. Effective peptide‐based modification of nanomaterials relies on preferential and strong binding between peptides and target nanomaterials. Therefore, the discovery and design of specific peptides with high binding affinity to nanomaterials are essential. Unfortunately, conventional peptide screening methods suffer from shortcomings which render peptide discovery time‐consuming, expensive, and cumbersome. Herein, leveraging unsupervised and supervised machine learning, a framework to accelerate peptide analysis is presented. Specifically, more than 1700 nanoparticle‐binding peptides are classified into peptide clusters to identify important peptide features to realize higher‐affinity binding. In addition, the binding and biomineralization properties of peptides are predicted with high classification accuracy, precision, and recall. This work then proposes the use of unsupervised k‐means clustering and supervised k‐nearest neighbors algorithms for grouping peptides and predicting their properties, respectively. It is anticipated that the framework originated from this study will further facilitate the rational selection and design of peptides for engineering functional bioinspired and biomimetic nanostructures.

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3