ASV station keeping under wind disturbances using neural network simulation error minimization model predictive control

Author:

Chavez‐Galaviz Jalil1,Li Jianwen1,Chaudhary Ajinkya1,Mahmoudian Nina1

Affiliation:

1. School of Mechanical Engineering Purdue University West Lafayette Indiana USA

Abstract

AbstractStation keeping is an essential maneuver for autonomous surface vehicles (ASVs), mainly when used in confined spaces, to carry out surveys that require the ASV to keep its position or in collaboration with other vehicles where the relative position has an impact over the mission. However, this maneuver can become challenging for classic feedback controllers due to the need for an accurate model of the ASV dynamics and the environmental disturbances. This work proposes a model predictive controller using neural network simulation error minimization (NNSEM–MPC) to accurately predict the dynamics of the ASV under wind disturbances. The performance of the proposed scheme under wind disturbances is tested and compared against other controllers in simulation, using the robotics operating system and the multipurpose simulation environment Gazebo. A set of six tests was conducted by combining two varying wind speeds that are modeled as the Harris spectrum and three wind directions (, , and ). The simulation results clearly show the advantage of the NNSEM–MPC over the following methods: backstepping controller, sliding mode controller, simplified dynamics MPC (SD‐MPC), neural ordinary differential equation MPC (NODE‐MPC), and knowledge‐based NODE MPC. The proposed NNSEM–MPC approach performs better than the rest in five out of the six test conditions, and it is the second best in the remaining test case, reducing the mean position and heading error by at least % ( m) and % (), respectively, across all the test cases. In terms of execution speed, the proposed NNSEM–MPC is at least 36% faster than the rest of the MPC controllers. The field experiments on two different ASV platforms showed that ASVs can effectively keep the station utilizing the proposed method, with a position error as low as  m and a heading error as low as within time windows of at least  s. This would increase the potential applications of ASVs for launch, recovery, and replenishment in long‐term surveys in collaboration with other autonomous systems.

Funder

Office of Naval Research

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Path Planning Methods for Marine Autonomous Surface Vehicles;Journal of Marine Science and Engineering;2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3