Shape‐optimization of extrusion‐dies via parameterized physics‐informed neural networks

Author:

Tillmann Steffen1ORCID,Hilger Daniel1ORCID,Hosters Norbert1,Elgeti Stefanie12

Affiliation:

1. Chair for Computational Analysis of Technical Systems RWTH Aachen University Aachen Germany

2. Institute for Lightweight Design and Structural Biomechanics Tu Wien Vienna Austria

Abstract

AbstractIn this paper, we present an approach to efficiently optimize the design of extrusion dies. Extrusion dies, which are relevant to the manufacturing process of plastics profile extrusion, traditionally require time‐consuming iterations between manual testing and die adjustments. As an alternative, numerical optimization can be used to obtain a high quality initial design and thereby reduce the number of adjustments to the actual die. However, numerical optimization can be computationally expensive, so the use of surrogate models can be helpful to improve efficiency. The latter is the goal of this work. Our method uses physics‐informed neural networks (PINNs) that directly incorporate a free‐form deformation (FFD) approach to allow for geometric variations. The FFD approach allows for a wide range of domain deformations, while the fully trained PINN ensures fast evaluation of the objective function. Using a two‐dimensional model of an extrusion die for demonstration, we detail the integration of the FFD method into the PINN model and discuss its potential in the three‐dimensional context.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3