Integrative teaching of metabolic modeling and flux analysis with interactive python modules

Author:

Kaste Joshua A. M.12ORCID,Green Antwan2,Shachar‐Hill Yair2ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA

2. Department of Plant Biology Michigan State University East Lansing Michigan USA

Abstract

AbstractThe modeling of rates of biochemical reactions—fluxes—in metabolic networks is widely used for both basic biological research and biotechnological applications. A number of different modeling methods have been developed to estimate and predict fluxes, including kinetic and constraint‐based (Metabolic Flux Analysis and flux balance analysis) approaches. Although different resources exist for teaching these methods individually, to‐date no resources have been developed to teach these approaches in an integrative way that equips learners with an understanding of each modeling paradigm, how they relate to one another, and the information that can be gleaned from each. We have developed a series of modeling simulations in Python to teach kinetic modeling, metabolic control analysis, 13C‐metabolic flux analysis, and flux balance analysis. These simulations are presented in a series of interactive notebooks with guided lesson plans and associated lecture notes. Learners assimilate key principles using models of simple metabolic networks by running simulations, generating and using data, and making and validating predictions about the effects of modifying model parameters. We used these simulations as the hands‐on computer laboratory component of a four‐day metabolic modeling workshop and participant survey results showed improvements in learners' self‐assessed competence and confidence in understanding and applying metabolic modeling techniques after having attended the workshop. The resources provided can be incorporated in their entirety or individually into courses and workshops on bioengineering and metabolic modeling at the undergraduate, graduate, or postgraduate level.

Funder

Biological and Environmental Research

Division of Graduate Education

National Institute of General Medical Sciences

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3