Two‐ and three‐dimensional multiphase mesh‐free particle modeling of transitional landslide with μ(I) rheology

Author:

Jafari Nodoushan Ehsan1ORCID,Tajnesaie Mohanna2,Shakibaeinia Ahmad3

Affiliation:

1. Department of Civil Engineering Campus of Bijar, University of Kurdistan Sanandaj Iran

2. Department of Civil Engineering Bijar Branch, Islamic Azad University Bijar Iran

3. Department of Civil Geological and Mining Engineering, Polytechnique Montreal Montreal Canada

Abstract

AbstractLandslides, which are the sources of most catastrophic natural disasters, can be subaerial (dry), submerged (underwater), or semi‐submerged (transitional). Semi‐submerged or transitional landslides occur when a subaerial landslide enters water and turns to submerged condition. Predicting the behavior of such a highly dynamic multi‐phase granular flow system is challenging, mainly due to the water entry effects, such as wave impact and partial saturation (and resulted cohesion). The mesh‐free particle methods, such as the moving particle semi‐implicit (MPS) method, have proven their capabilities for the simulation of the highly dynamic multiphase systems. This study develops and evaluates a numerical model, based on the MPS particle method in combination with the μ(I) rheological model, to simulate the morphodynamic of the granular mass in semi‐submerged landslides in two and three dimensions. An algorithm is developed to consider partial saturation (and resulting cohesion) during the water entry. Comparing the numerical results with the experimental measurements shows the ability of the proposed model to accurately reproduce the morphological evolution of the granular mass, especially at the moment of water entry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3