Semi‐Coherent Heterointerface Engineering via In Situ Phase Transition for Enhanced Sodium/Lithium‐Ions Storage

Author:

Xu Haoran1,Meng Qi1,Yan Tengxin1,Wang Ziyi1,Xiong Ya1,Wu Shaowen1,Han Ye1,Dong Shihua12ORCID,Tian Jian1

Affiliation:

1. School of Materials Science and Engineering College of Energy Storage Technology Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China

2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 P. R. China

Abstract

AbstractTo improve ion transport kinetics and electronic conductivity between the different phases in sodium/lithium‐ion battery (LIB/SIB) anodes, heterointerface engineering is considered as a promising strategy due to the strong built‐in electric field. However, the lattice mismatch and defects in the interphase structure can lead to large grain boundary resistance, reducing the ion transport kinetics and electronic conductivity. Herein, monometallic selenide Fe3Se4‐Fe7Se8 semi‐coherent heterointerface embedded in 3D connected Nitrogen‐doped carbon yolk–shell matrix (Fe3Se4‐Fe7Se8@NC) is obtained via an in situ phase transition process. Such semi‐coherent heterointerface between Fe3Se4 and Fe7Se8 shows the matched interfacial lattice and strong built‐in electric field, resulting in the low interface impedance and fast reaction kinetics. Moreover, the yolk–shell structure is designed to confine all monometallic selenide Fe3Se4–Fe7Se8 semi‐coherent heterointerface nanoparticles, improving the structural stability and inhibiting the volume expansion effect. In particular, the 3D carbon bridge between multi‐yolks shell structure improves the electronic conductivity and shortens the ion transport path. Therefore, the efficient reversible pseudocapacitance and electrochemical conversion reaction are enabled by the Fe3Se4–Fe7Se8@NC, leading to the high specific capacity of 439 mAh g−1 for SIB and 1010 mAh g−1 for LIB. This work provides a new strategy for constructing heterointerface of the anode for secondary batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3