Exploring the Growth Dynamics of Size‐Selected Carbon Atomic Wires with In Situ UV Resonance Raman Spectroscopy

Author:

Marabotti Pietro12ORCID,Peggiani Sonia1ORCID,Melesi Simone1ORCID,Rossi Barbara3ORCID,Gessini Alessandro3ORCID,Bassi Andrea Li1ORCID,Russo Valeria1ORCID,Casari Carlo Spartaco1ORCID

Affiliation:

1. Department of Energy Micro and Nanostructured Materials Laboratory – NanoLab Politecnico di Milano Via Ponzio 34/3 Milano 20133 Italy

2. Institut für Physik Humboldt‐Universität zu Berlin Newtonstraße 15 12489 Berlin Germany

3. Elettra Sincrotrone Trieste S.S. 114 km 163.5 Basovizza Trieste 34149 Italy

Abstract

AbstractShort carbon atomic wires, the prototypes of the lacking carbon allotrope carbyne, represent the fundamental 1D system and the first stage in carbon nanostructure growth, which still exhibits many open points regarding their growth and stability. An in situ UV resonance Raman approach is introduced for real‐time monitoring of the growth of carbon atomic wires during pulsed laser ablation in liquid without perturbing the synthesis environment. Single‐chain species’ growth dynamics are tracked, achieving size selectivity by exploiting the peculiar optoelectronic properties of carbon wires and the tunability of synchrotron radiation. Diverse solvents are systematically explored, finding size‐ and solvent‐dependent production rates linked to the solvent's C/H ratio and carbonization tendency. Carbon atomic wires’ growth dynamics reveal a complex interplay between formation and degradation, leading to an equilibrium. Water, lacking in carbon atoms and reduced polyynes solubility, yields fewer wires with rapid saturation. Organic solvents exhibit enhanced productivity and near‐linear growth, attributed to additional carbon from solvent dissociation and low relative polarity. Exploring the dynamics of the saturation regime provides new insights into advancing carbon atomic wires synthesis via PLAL. Understanding carbon atomic wires’ growth dynamics can contribute to optimizing PLAL processes for nanomaterial synthesis.

Funder

Elettra-Sincrotrone Trieste

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3