Densification Induced Decoupling of Electrical and Thermal Properties in Free‐Standing MWCNT Films for Ultrahigh p‐ and n‐Type Power Factors and Enhanced ZT

Author:

Li Kuncai1,Sun Xu1,Wang Yizhuo1,Wang Jing1,Dai Xu1,Yao Yanqiu2,Chen Bin2,Chong Daotong2,Yan Junjie2,Wang Hong12ORCID

Affiliation:

1. State Key Laboratory of Multiphase Flow in Power Engineering & Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 China

2. School of Energy and Power Engineering Xi'an Jiaotong University Xi'an 710054 China

Abstract

AbstractGenerating sufficient power from waste heat is one of the most important things for thermoelectric (TE) techniques in numerous practical applications. The output power density of an organic thermoelectric generator (OTEG) is proportional to the power factors (PFs) and the electrical conductivities of organic materials. However, it is still challenging to have high PFs over 1 mW m−1 K−2 in free‐standing films together with high electrical conductivities over 1000 S cm−1. Herein, densifying multi‐walled carbon nanotube (MWCNT) films would increase their electrical conductivity dramatically up to over 10 000 S cm−1 with maintained high Seebeck coefficients >60 µV K−1, thus leading to ultrahigh PFs of 7.25 and 4.34 mW m−1 K−2 for p‐ and n‐type MWCNT films, respectively. In addition, it is interesting to notice that the electrical properties increase faster than the thermal conductivities, resulting in enhanced ZT of 3.6 times in MWCNT films. An OTEG made of compressed MWCNT films is fabricated to demonstrate the heat‐to‐electricity conversion ability, which exhibits a high areal output power of ∼12 times higher than that made of pristine MWCNT films. This work demonstrates an effective way to high‐performance nanowire/nanoparticle‐based TE materials such as printable TE materials comprised of nanowires/nanoparticles.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3