Catalytic Membrane Vacuum Regeneration: Enhancing Energy Efficiency and Renewable Compatibility in Direct Air Capture

Author:

Momeni Arash1,McQuillan Rebecca V.1ORCID,Anisi Hossein1,Alivand Masood S.1,Zavabeti Ali1,Stevens Geoffrey W.1,Kim Seungju2,Mumford Kathryn A.1ORCID

Affiliation:

1. Department of Chemical Engineering The University of Melbourne Parkville VIC 3010 Australia

2. Department of Chemical and Environmental Engineering School of Engineering RMIT University Melbourne VIC 3000 Australia

Abstract

AbstractLiquid‐based CO2 direct air capture (DAC) is a pivotal technology for mitigating climate change. Energy‐intensive CO2 desorption, high regeneration temperatures, and solvent degradation are key challenges. Here, low‐temperature catalytic membrane vacuum regeneration (C‐MVR) as a promising approach for sustainable and energy‐efficient DAC is developed and evaluated. Noncatalytic experiments are conducted using three commercial membrane modules and four green amino acid salts under varying conditions (e.g., temperatures and flowrates). Based on CO2 transfer rates, ultra‐thin dense composite membranes and aqueous potassium taurinate (TauK) are the most promising for MVR in DAC applications. For C‐MVR trials, commercial ion‐exchange resin improves CO2 desorption fluxes by up to 64.4% and reduces thermal energy requirements by up to 39.1%. TauK demonstrates the highest CO2 flux and lowest thermal energy consumption. Parametric analysis of catalyst performance for varying temperatures, catalyst amount, and solvent concentrations is also performed. To minimize any potential precipitation in TauK, potassium carbonate (K2CO3) is added, showing minimal impact on CO2 desorption kinetics and catalyst improvement. The findings of this study highlight the practical applicability of C‐MVR using green amino acid salts as a sustainable approach to boost CO2 desorption rate and reduce thermal energy input.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3