Plexcitonic Nanorattles as Highly Efficient SERS‐Encoded Tags

Author:

Estévez‐Varela Carla1,Núñez‐Sánchez Sara12,Piñeiro‐Varela Paula345,de Aberasturi Dorleta Jiménez345,Liz‐Marzán Luis M.1345ORCID,Pérez‐Juste Jorge1,Pastoriza‐Santos Isabel1

Affiliation:

1. CINBIO Universidade de Vigo Vigo 36310 Spain

2. Centro de Física das Universidades do Minho e do Porto (CF‐UM‐UP) Universidade do Minho Braga 4710‐057 Portugal

3. CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Miramon Pasealekua, 194 Donostia‐San Sebastián Gipuzkoa 20014 Spain

4. Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN, ISCIII) Donostia‐San Sebastián Gipuzkoa 20014 Spain

5. Ikerbasque, Basque Foundation for Science Bilbao 48009 Spain

Abstract

AbstractPlexcitonic nanoparticles exhibit strong light‐matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light‐matter interactions are investigated by UV‐visible and surface‐enhanced Raman scattering (SERS) spectroscopies, supported by finite‐difference time‐domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J‐aggregates with near‐zero‐refractive index. As plexcitonic nanostructures nanorattles are employed, based on J‐aggregates of the cyanine dye 5,5,6,6‐tetrachloro‐1,1‐diethyl‐3,3‐bis(4‐sulfobutyl)benzimidazolocarbocyanine (TDBC) and plasmonic silver‐coated gold nanorods, confined within mesoporous silica shells, which facilitate the adsorption of the J‐aggregates onto the metallic nanorod surface, while providing high colloidal stability. Electromagnetic simulations show that the electromagnetic field is strongly confined inside the J‐aggregate layer, at wavelengths near the upper plexcitonic mode, but it is damped toward the J‐aggregate/water interface at the lower plexcitonic mode. This behavior is ascribed to the sharp variation of dielectric properties of the J‐aggregate shell close to the plasmon resonance, which leads to a high opposite refractive index contrast between water and the TDBC shell, at the upper and the lower plexcitonic modes. This behavior is responsible for the high SERS efficiency of the plexcitonic nanorattles under both 633 nm and 532 nm laser illumination. SERS analysis showed a detection sensitivity down to the single‐nanoparticle level and, therefore, an exceptionally high average SERS intensity per particle. These findings may open new opportunities for ultrasensitive biosensing and bioimaging, as superbright and highly stable optical labels based on the strong coupling effect.

Funder

European Research Council

Fundação para a Ciência e a Tecnologia

Ministerio de Universidades

Ministerio de Ciencia e Innovación

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3