Sub‐Band Assisted Z‐Scheme for Effective Non‐Sacrificial H2O2 Photosynthesis

Author:

Wang Wenchao12ORCID,Zhou Tao1,Yang Yuchen3,Du Lili1,Xia Ruiqin1,Shang Congxiao1,Phillips David Lee1ORCID,Guo Zhengxiao13ORCID

Affiliation:

1. Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR 999077 P. R. China

2. School of New Energy Nanjing University of Science & Technology Jiangyin 214443 P. R. China

3. Zhejiang Institute of Research and Innovation The University of Hong Kong Hangzhou 311305 P. R. China

Abstract

AbstractPhotosynthesis of H2O2 from earth‐abundant O2 and H2O molecules offers an eco‐friendly route for solar‐to‐chemical conversion. The persistent challenge is to tune the photo‐/thermo‐ dynamics of a photocatalyst toward efficient electron–hole separation while maintaining an effective driving force for charge transfer. Such a case is achieved here by way of a synergetic strategy of sub‐band‐assisted Z‐Scheme for effective H2O2 photosynthesis via direct O2 reduction and H2O oxidation without a sacrificial agent. The optimized SnS2/g‐C3N4 heterojunction shows a high reactivity of 623.0 µmol g−1 h−1 for H2O2 production under visible‐light irradiation (λ > 400 nm) in pure water, ≈6 times higher than pristine g‐C3N4 (100.5 µmol g−1 h−1). Photodynamic characterizations and theoretical calculations reveal that the enhanced photoactivity is due to a markedly promoted lifetime of trapped active electrons (204.9 ps in the sub‐band and >2.0 ns in a shallow band) and highly improved O2 activation, as a result of the formation of a suitable sub‐band and catalytic sites along with a low Gibbs‐free energy for charge transfer. Moreover, the Z‐Scheme heterojunction creates and sustains a large driving force for O2 and H2O conversion to high value‐added H2O2.

Funder

Environment and Conservation Fund

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3