Van der Waals Antiferroelectric CuCrP2S6‐Based Artificial Synapse for High‐Precision Neuromorphic Computation

Author:

Yu Zhipeng1,Wang Qinan12,Zeng Tianle13,Ye Kun3,Zhou Houjian34,Han Zishuo1,Zeng Yuxuan1,Fang Bin1,Lv Weiming1,Geng Lin1,Zhao Chun2,Liu Zhongyuan3,Zeng Zhongming1ORCID

Affiliation:

1. Nanofabrication facility Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences Suzhou 215123 China

2. School of Advanced Technology Xi'an Jiaotong‐Liverpool University Suzhou 215123 China

3. Center for High Pressure Science (CHiPS) State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao 066004 China

4. China Nonferrous Metals Innovation Institute (Tianjin) Co. Ltd. Tianjin 300393 China

Abstract

Abstract2D van der Waals heterostructure‐based artificial synapses have emerged as a compelling platform for next‐generation neuromorphic systems, owing to their tunable electrical conductivity and layer‐engineered functionality through controlled stacking of 2D materials. In this work, an engineered SnS₂/h‐BN/CuCrP₂S₆ van der Waals antiferroelectric field‐effect transistor (AFe‐FET) is presented that implements synaptic weight modulation through the synergistic interplay of charge trapping dynamics and electric‐field‐controlled ferroelectric polarization switching. The AFe‐FET architecture successfully emulates essential neuroplasticity features, including paired‐pulse facilitation, short‐term plasticity, and long‐term plasticity. The device exhibits exceptional long‐term potentiation (LTP) and long‐term depression (LTD), with an ultralow nonlinearity coefficient of 1.1 for both LTP and LTD operations, high symmetricity (30), and broad dynamic range (Gmax/Gmin = 10). The AFe‐FET‐based neuromorphic system demonstrates an outstanding computational efficacy, i.e. a classification accuracy of 97.7% on the MNIST benchmark. Furthermore, implementing reservoir computing architectures enables cognitive process emulation, attaining 94.7% task recognition accuracy in brain‐inspired decision‐making simulations. This investigation establishes new design paradigms for high‐fidelity synaptic devices, providing a strategy for energy‐efficient neuromorphic computing systems with biological plausibility.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3