Accessible Tetrathiafulvalene Moieties in a 3D Covalent Organic Framework for Enhanced Near‐Infrared Photo‐Thermal Conversion and Photo‐Electrical Response

Author:

Ma Tian‐Rui1,Ge Feiyue1,Ke Si‐Wen1,Lv Sen1,Yang Zhi‐Mei1,Zhou Xiao‐Cheng1,Liu Cheng1,Wu Xue‐Jun1,Yuan Shuai1,Zuo Jing‐Lin12ORCID

Affiliation:

1. State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 P. R. China

2. Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China

Abstract

AbstractRedox‐active tetrathiafulvalene (TTF)‐based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two‐dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8‐connected TTF linker (TTF‐8CHO) is designed as a new building block for the construction of three‐dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF‐8CHO‐COF. In comparison to its 2D counterpart employing a 4‐connected TTF linker, the 3D COF design enhances access to redox sites, facilitating controlled oxidation by I2 or Au3+ to tune physical properties. When irradiated with a 0.7 W cm−2 808 nm laser, the oxidized 3D COF samples (@TTF‐8CHO‐COF and Au NPs@TTF‐8CHO‐COF) demonstrated rapid temperature increases of 239.3 and 146.1 °C, respectively, which surpassed those of pristine 3D COF (65.6 °C) and the 2D COF counterpart (6.4 °C increment after I2 treatment). Furthermore, the oxidation of the 3D COF heightened its photoelectrical responsiveness under 808 nm laser irradiation. This augmentation in photothermal and photoelectrical response can be attributed to the higher concentration of TTF·+ radicals generated through the oxidation of well‐exposed TTF moieties.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3