Activating Ion Channels in Collapsed Hydrogel Derived Densified MXene Films with Cellulose Nanofibers to Overcome the Areal Versus Volumetric Capacitance Trade‐Off

Author:

Dutta Pronoy1ORCID,Deb Sujit Kumar1,Patra Amalika1,Karim Golam Masud1,Majumder Abhisek1,Kumar Pradip2,Iyer Parameswar Krishnan34,Padma Narayanan56,Maiti Uday Narayan14ORCID

Affiliation:

1. Department of Physics Indian Institute of Technology Guwahati Guwahati Assam 781039 India

2. CSIR‐Advanced Materials and Processes Research Institute (AMPRI) Bhopal 462026 India

3. Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India

4. Centre of Nanotechnology Indian Institute of Technology Guwahati Guwahati 781039 India

5. Technical Physics Division Bhabha Atomic Research Centre Mumbai 400085 India

6. Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India

Abstract

AbstractConcomitant achievement of all three performance pillars of a supercapacitor device, namely gravimetric, areal, and volumetric capacitance is a grand challenge. Nevertheless, its fulfilment is indispensable for commercial usage. Although, high compactness is the fundamental requirement to achieve high volumetric performance, it severely affects ion transportation in thick electrodes. Such trade‐off makes it extremely challenging to realize very high areal and volumetric performance simultaneously. Here, a collapsed hydrogel strategy is introduced to develop MXene/cellulose nanofiber (CNF) based densified electrodes that offer excellent ion transportation despite a massive increase in areal mass loading (>70 mg cm−2). Quasi‐oriented MXene/CNF (MXCF) hydrogels are produced through an electric field‐guided co‐assembly technique. Ambient dehydration of these hydrogels incorporates numerous pores in the resultant compact electrodes due to crumpling of the MXene sheets, while CNF ensures connectivity among the locally blocked pores in different length scales. The resultant collapsed MXCF densified electrode shows a remarkably high areal capacitance of 16 F cm−2 while simultaneously displaying a high volumetric capacitance of 849.8 F cm−3 at an ultrahigh mass loading of up to 73.4 mg cm−2. The universality of strategy, including the co‐assembly of hydrogel and its collapse, is further demonstrated to develop high‐performance asymmetric and wearable devices.

Funder

Board of Research in Nuclear Sciences

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3