Pulsed Laser‐Twisted Spinel‐to‐Rocksalt High‐Entropy 3d‐Metal Oxides for Selective Ammonia Electrosynthesis

Author:

Rajan Akash Prabhu Sundar1,Theerthagiri Jayaraman1,Limphirat Wanwisa2,Kumar Anuj3,Senthil Raja Arumugam1,Choi Myong Yong14ORCID

Affiliation:

1. Department of Chemistry (BK21 FOUR) Research Institute of Advanced Chemistry Gyeongsang National University Jinju 52828 Republic of Korea

2. Beamline Division Synchrotron Light Research Institute (SLRI) Nakhon Ratchasima 30000 Thailand

3. Nano‐Technology Research Laboratory, Department of Chemistry GLA University Mathura Uttar Pradesh 281406 India

4. Core‐Facility Center for Photochemistry & Nanomaterials Gyeongsang National University Jinju 52828 Republic of Korea

Abstract

AbstractThe electrochemical synthesis of ammonia (NH3) via the nitrate reduction reaction (eNO3RR) intends an efficient replacement to the Haber–Bosch technique, operating under ambient conditions. Nitrate‐based voltaic cells present a multifunctional system by simultaneously removing wastewater pollutants, producing NH3, and generating energy. Herein, high‐entropy spinel oxide (HE‐SPO) derived from divalent (Mn, Fe, Co, Ni, and Cu) 3d transition metals are transformed into single‐phase (MnFeCoNiCu)O high‐entropy rock‐salt oxides (HE‐RSO) via pulsed laser irradiation in liquids, achieving high‐entropy phase twisting with structural stabilization. The HE‐RSO electrocatalyst demonstrated exceptional eNO3RR‐to‐NH3 conversion, with an NH3 production rate of 15.34 mg h−1 cm−2 at −0.4 V versus RHE and a Faradaic efficiency of 92%. In situ Raman spectroscopy revealed Co and Cu as dual‐active sites, facilitating the N‐end mechanism for eNO3RR, which is further validated via density functional theory calculations. Leveraging this high‐efficiency eNO3RR‐to‐NH3 system, the HE‐RSO catalyst is integrated into a Zn–nitrate battery, reaching a high output voltage of 1.22 V and a power density of 1.75 mW cm−2. This study highlights the pulsed laser process as a new avenue for high‐entropy structural stabilization and underscores the potential of HE‐RSO for sustainable NH3 production and integrated energy applications.

Funder

Gyeongsang National University

National Research Foundation of Korea

Korea Basic Science Institute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3